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Recently there has been an ever growing interest and activity in the attempts on quantifying 
chirality which is causing this concept to become a diverse and uncorrelated entity. Possible rea- 
sons for this complication are presently discussed. It is shown that it becomes necessary to dis- 
tinguish between geometric and physical chiralities. For geometrical chiral sets it is necessary 
to distinguish between equi- and sub-dimensional sets where the metrization of their chirality 
can be generalized and unified only for equi-dimensional sets. This is accomplished by the 
method of overlap. For sub-dimensional sets there exists no general and unique mode of quanti- 
fying chiralities, except for discrete and finite sets of points such as the comers of polyhedron, 
for which the approach of Hausdorff distances proves to be an efficient method of quantifying 
the chirality presented by their distribution. The domain of physical chiralities, although being 
of natural significance, is still in a premature state of development. Each physical property 
may have a different chiral measure so that there is no sense in a claim of unification. Equi- and 
sub-dimensionality exist also for physical chiralities and they can be quantified by the overlap 
method for equi-dimensional sets. 

1. I n t r o d u c t i o n  

In recent years there has been a rapidly growing interest and activity in the 
domain  of  structural chirality, in particular concerning the possible metr izat ion of  
chirality [1-8]. This development,  being still in its early stages, is becoming acceler- 
a ted also by the ever-growing computat ional  ability and technology. Judging 
from already existing publications it is becoming gradually clearer that  this devel- 
opment  is bound  to face several serious problems concerning the mot ivat ion and 
usefulness of  the anticipated ul t imum concept  of  measure of  chirality. Unlike many  
simple physical and geometric properties such as mass, charge, volume, area, 
length, etc., which are readily quantifiable, the measure of  chirality is already 
becoming diverse and uncorrelated owing to different and inconsistent approaches  
of  quantifying chirality. Moreover ,  none of  the already introduced methods  is suffi- 
ciently general to propose a measure of  chirality for any arbitrarily given chiral 
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object or set. Such lack of generality prevents the formation of a unique metric defi- 
nition that can be referred to such a question as, "How chiral is any given geo- 
metric body?" This difficulty is of substantial nature and it is highly doubtful 
whether it can be readily overcome, and this is apart from other complications of 
more technical nature that may exist, such as severe computational difficulties. 

It is the purpose of the present article to consider some topological aspects that 
are involved in this major obstacle towards the unification of chiral measure. 
Before approaching this subject it may be of interest to notice an obvious motiva- 
tion for quantifying chirality which is related to the existence of microscopic chiral- 
ity in nature in the form of chiral molecules and unit cells in crystals [9]. 
Moreover, the physical effect that leads to this observation, namely optical activity 
and related effects [10], shows different measurable results for different molecules 
which strongly indicates the existence of degree ofchirality typical to each molecule 
or unit cell. In view of this it is hardly surprising that there exists strong motivation 
for quantifying molecular or unit cell chiralities. On the other hand, since mole- 
cules or unit cells consist of a finite number of atoms or approximately point-mass 
nuclei, the geometric representation of a molecule becomes a set of finite number 
of points to which the problem of quantifying chirality is applied [1,4,5] and a con- 
venient method for this involves the Hausdorff distances [5], first introduced to 
this domain by Rassat [4]. Such a set may also be regarded as corner points of a 
polyhedron, the simplest version of which being the tetrahedron. This procedure 
eventually leads to a question such as, "What is the most chiral tetrahedron?", or to 
its two-dimensional equivalent: "What is the most chiral triangle?". In contrast to 
this molecular motivation it would look a little strange to ask: "What  is the most 
chiral potatoe?". As a matter of fact, a perfectly general mode ofchiral metrization 
should be applicable, in principle, to either question. 

As things stand now, the geometric aspect of chirality is the main objective in 
the attempts to quantify chirality. This aspect is treated in section 2 and it is argued 
that the problem of dimensionality of geometric sets may well be one of the main 
obstacles that stand in the way towards generalizing and unifying the measure of 
chirality. But this is not the only problem. The geometric representation of chirality 
is somewhat over-simplified and even a misleading picture of chirality in nature. 
In order to appreciate better this argument it is important to notice that the relative 
positions in space of the massive nuclei in a given molecule are, in fact, an outcome 
of the spatial distribution of the electronic wave function of the binding electrons 
throughout the molecule. For this reason it may be more physically justified to ask: 
"How chiral is the wave-function distribution of the binding electrons in a given 
molecule?". Such a possible question, premature as it may sound, takes us into the 
much richer domain of physical chiralities to be discussed in section 3. Let us stress 
this point a little further by noting that even for the point-mass chiral distribu- 
tion, if we place n different masses at the corners of some achiral polyhedron, the 
result will be a chiral molecule due to the physical differences within the massive 
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distribution. Until now, the necessity, as well as the possibility, of  quantifying phy- 
sical chiralities have been largely overlooked with only a few exceptions [7,8]. 

Before concluding this introduction it ought to be mentioned that the present 
article is not  meant  to provide a review of the various methods of  quantifying chir- 
ality. The interested reader is referred for this to a recent article by Buda et al. [5]. 

2. Geome t r i c  measure  ofchi ra l i ty  

As ment ioned above, the problem of dimensionality may strongly complicate 
the attempts of quantifying chirality. This point is also discussed by Buda et al. [5] 
in the context of  their presentation of a chiral measure based on the Hausdorff  dis- 
tances. In order to appreciate this point a little better, let us consider any arbitrary 
collection of geometric properties or sets such as points, linear segments, curves, 
polygons, surfaces, polyhedra, etc., which may be of use for possible definitions of  
chiral measures. These properties or sets Ui are usually contained in a space, the 
dimensionality of which is do = 2 or 3. Let us denote the dimensionality of  the set Ui 
by d(Ui) and let us distinguish now between two cases. (a) Sub-dimensional sets 
which satisfy 

d(Ui)<do. (1) 

(b) Equi-dimensional sets for which 

d(Vi) = do. (2) 

For example, a curve Uc in 3d space has d(Uc) = 1 < do = 3. The same is true for 
U~ in do = 2. A polyhedron has d(Up) = 3 = do, but this example is a little more  
complex as is demonstrated below. Let us consider a tetrahedron which has a set Ua 
of 4 comers  (or points) where d(Ua) = 0; A set Us of 6 sides where d(Us) = 1; A 
set Uf of  4 faces, where d ( U r ) = 2  and a set Uv of one volume where 
d(Uv) = 3 = do. Only the last set Uv is equi-dimensional, whereas all other sets or 
properties or elements are sub-dimensional. It is highly probable that any of  these 
elements can provide for means of  defining a measure of chirality of a tetrahedron 
and, actually, two different properties, the 4 comers [4,5] and the volume [6,7], 
have already been applied for chiral quantification. 

Next let us consider the operation of intersection between any two elements or 
sets Ui and Uj. Let U~j = Ui n Uj then if both Ui and Uj are subdimensional sets, 
then [11] 

d(Vi n Uj) <d(Ui), d(Uj) <do (3) 

if one of  the sets, say, Ui is equi-dimensional then 

d( Ui n Uj) ~-- d( Uj) < d( Ui) = do (4) 

and if both sets are equi-dimensional then 
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a(  u, n Uj) = d(U,)  = d(Uj)  = do. (5) 

The operation of intersection of sets has been proposed as a natural means for 
metrization ofchirality [6,7]. Let U and U* be two mirror images (enantiomorphs) 
of a given equi-dimensional set, and let U n U* be their intersection and 
V ( U N  U*) be its volume for do = 3 or area S ( U N  U*) for do --- 2 .V(UN U*) or 
S(U N U*) are now to be maximized by applying rotational and/or translational 
(RT) transformations on U and/or  U* so that 

Vo = Vo(UN U*) = max[V(U n U*)]. (6) 

Let Vmin be defined by 

v.uo = 2 i v ( u )  - v0] (7) 

and the volume coefficient of chirality Xv is given [7] by 

Vmin  V ( U ) -  V 0 
XV=2v(u)  = v(u)  (8) 

Similarly, for do = 2, the area coefficient ofchirality is given by 

Sm n S ( U )  - So 
Xs - 2S(U-----] - S(U)  (9) 

These, in fact, are the most general measures of chirality for equi-dimensional sets 
U, for 3d and 2d spaces, respectively. 

There are a few interesting topological facts which ought to be realized before 
applying this definition to actual sets. The most significant question concerns the 
shape of U N U* of maximal overlap. Is it chiral or achiral? This question cannot be 
readily answered and it is hereby conjectured that for all convex sets U it is 
achiral. These include all convex polyhedra and polygons. For the cases where the 
maximum overlap is chiral there exist two maximal overlaps, one being the mirror 
image of the other [7] and it can be shown [12] (see fig. 1) that a simple translation of 
U with respect to U* transforms any chiral intersection U n U* into its mirror 
image ( U n U*)*. The overlap approach to the metrization of geometric chirality is 
general and unique for all equi-dimensional sets and in this respect the questions 
of "how chiral is a given polyhedron?" as well as "how chiral is a given potatoe?" 
can, in principle, be equally well answered, although these may well be uneasy ques- 
tions to answer. 

Another approach to quantifying chirality that emerges from the opposite extre- 
mum of dimensionality has recently become useful. This approach has been intro- 
duced by Rassat [4], developed and implemented by Buda et al. [5] and it is based on 
the Hausdorff distances (HD) method. The HD approach is highly applicable for 
discrete and finite sets of points which are the geometric presentations of molecular 
point masses structures. This mode of chiral measure is extremely sub-dimen- 
sional, where do = 0 and is not based on the overlap approach. Buda et al. [5] 
employ this approach to quantify chirality of triangles and tetrahedra which are 
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(o) (b) (c) 

Fig. 1. D and D* are two enantiomorphs of the same set. In (a) an arbitrary intersection D n D* of 
these enantiomorphs is shown whereas in (b) the mirror image (D N D*) is shown. In (c) both intersec- 
tions are shown simultaneously. The direction of the arrow points along the relative translation of D 

with respect to D* in order to transform D O D* to (D n D*)*. 

defined by the relative positions of their corner points. The main problem with the 
HD approach is that it is limited to finite sets of points and it becomes prohibitively 
awkward to apply it to infinite and continuous sets of  points. For  this reason it 
becomes impossible for the HD method to quantify the chirality of a triangle or a 
tetrahedron by treating them as convex sets of points. This is true for any continu- 
ous set of  points, and therefore it is meaningless to a sk : "How chiral is a given pota- 
toe?" by applying the HD method. The finite and discrete feature of the HD 
method  severely limits its applicability and therefore it cannot be regarded as a 
general method  of quantifying chirality. Another shortcoming that limits the 
generality of  the HD method in its present form is its lack of  applicability to physi- 
cal chiralities. In view of these deficiencies it becomes doubtful if this approach 
can become the basis of unification of chiral measure. It is interesting to notice that 
by applying the constraints of the HD method on the corner points of two enantio- 
morphs of  a given body, being a polygon or polyhedron, it is possible to obtain a 
so-called [5] "optimal overlap" between the two enantiomorphs.  Such a super- 
imposition is actually an overlap between empty sets of points and it has no 
straightforward relation to the maximal overlap of equi-dimensional sets. 

In conclusion, there exists a deep gap between the two approaches described 
here. The overlap approach is quite general for equi-dimensional sets or bodies, 
whereas the Hausdorff  distances approach is limited to discrete and finite sets of  
points. This gap between equi and sub-dimensional approaches is hard to bridge 
and it is causing diversity and inconsistency between different measures of  chiral- 
ity. The overlap approach is only of partial success since it is not  applicable to 
sub-dimensional sets, whereas the Hausdorff  distances method is efficient only 
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for discrete and finite sets of zero dimensionality. Actually, the well-motivated 
attempts to quantify chirality for sub-dimensional sets may be the main cause 
leading to high diversity and inconsistency of different modes of quantifying 
chirality. 

3. Physical  chirality 

In contrast to the rapid developments in geometric chirality there has hardly 
been any interest in the domain of physical chirality which is to be regarded as the 
natural extension of geometric chirality. There are several reasons for this lack of 
activity. One of these is probably a certain lack of awareness of its significance. A 
more obvious reason is probably the anticipated difficulties and complications in 
the attempts at quantifying physical chirality, in particular at its practical calcula- 
tion. It is quite feasible that a deeper understanding and insight into the problems 
of quantifying geometric chirality will become of preliminary help before 
approaching physical chiralities. For these reasons the discussion carried out here 
is meant to be more compact and rather incomplete. 

At first let us recall that a physical chirality is related to the presence of asymme- 
try in the spatial distribution of any physical property such as mass or charge den- 
sity or the distribution of [~,[ 2, the electronic wave function or of (~,~2~,*), ~2 being 
any relevant quantum operator. It is quite clear that the same dimensional qualifi- 
cations exist for physical as for geometric chirality. There are equi- as well as sub- 
dimensional physical sets and, as a matter of fact, the chiral quantification of equi- 
dimensional physical sets has already been proposed [7] and this is performed in 
an analogous way to the overlap method [7,8]. On the other hand, the HD method 
in its present form is inapplicable to any physical chirality, not even for discrete 
and finite sets of varying mass points. Actually, as has already been mentioned, the 
chiral measure of a molecular or unit cell structure may well be more relevant to 
] ~l 2, or (g/f2~u*), continuous distributions throughout the molecule rather than to 
the relative locations of the nuclear masses. But even so, the massive distribution 
throughout the molecule is also of physical rather than geometric nature. These 
may well be strong arguments in favour of physical rather than geometric chiral- 
ities, but they are also quite premature for a rapid development in view of may prac- 
tical problems. For instance, in many partical cases the exact distribution o f  I~,l 2 
is only crudely known, and therefore hardly usable. In addition, it is important to 
emphasize that in contrast to geometric properties such as volume, area and length 
which are homogeneously distributed, physical properties can well be inhomoge- 
neous. This introduces certain topological complications which make the problem 
even less accessible. For example, it is quite meaningless to describe an inhomoge- 
neous physical set as convex or simply connected. Nevertheless, like in the case of 
geometric chirality of equi-dimensional sets, there also exist for physical chiralities 
two possibilities of maximal overlap, namely, being achiral or chiral. For the sec- 
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ond case there are also two overlaps, one being the mirror-image of another. 
Another important point is that for physical chiralities, even of equi-dimensional 
sets, it is meaningless to look for uniqueness of chiral measure since for any physi- 
cal property, say i, there exists a different measure Xi. Moreover, it may be quite 
possible that given a physical chiral set be characterized as L with respect to one 
property and as D or achiral with respect to another [7]. For these reasons it is sense- 
less to strive for a unification of different physical chiral measures, and each one 
stands independently on its own. Nevertheless unification can be accomplished, in 
principle, for each physical chirality of equi-dimensional sets by employing the 
overlap method. 

Before concluding this section it may be of importance to mention the subject 
of chiral interaction introduced recently by the same author [13,14]. There exist 
many devices such as windmills and Crookes' radiometer which interact with var- 
ious media such as wind or radiation and as a result they begin to rotate in one pre- 
ferred direction out of two possible ones. A necessary condition for such devices is 
that their surface of contact with the medium be chiral. For such devices the chiral 
distribution of the physical property is on a surface and therefore they are to be con- 
sidered as sub-dimensional sets. It is of special interest to notice that for Crookes' 
radiometer the physical chirality is not in the shape but rather in the colors of the 
wings of the device, namely, black and silver. In fact, the chirality is in the distribu- 
tion of the physical property of optical absorption over the surface of the wings 
which comes in contact with the light radiation. The phenomenon of chiral interac- 
tion has been extended to microscopic systems such as soluble proteins [14] but as 
yet it has not been verified by experiment. The possible presence of such modes of 
chiral interaction extends considerably the significance of physical chiralities. 

In addition let us also recall that there exists the physical effect of rotation of 
the vector polarization of light by chiral molecular structure [10]. Similar effect 
exists also in the scattering of polarized electrons by chiral molecules [15]. 

4. Conclusions  

As indicated throughout this article, its main purpose is to present and discuss 
various problems and difficulties that stand as obstacles toward possible generali- 
zation and unification of chiral metrization. The phenomenon of chirality is to be 
categorized into geometric and physical chiralities. For geometric chirality it is 
shown that there exist two kinds of chiral sets, namely, equi- and sub-dimensional 
sets where the metric of chirality can be generalized and unified only for equi- 
dimensional sets and this is accomplished by the overlap method [6,7]. For this case 
the shape of maximum overlap can be either chiral or achiral, whereas for chiral 
overlap there exist two enantiomorphs of the same overlap that can be transformed 
from one to another by a pure translation. It is conjectured that for convex chiral 
sets the maximum overlap is achiral. 
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In the case of discrete and finite sets of points, being sub-dimensional of do = 0, 
there exists the method of Hausdorff distances [5] for quantifying the chiral distri- 
bution of these points. This approach cannot be readily generalized beyond zeroth 
dimensionality, which severely limits its generality. This approach is useful for 
quantifying the geometric chirality of molecular structures. 

The concept of physical chirality, being well less developed, is also discussed in 
brief. It is shown that physical chiral sets can also be characterized as equi- or sub- 
dimensional. The chirality of equi-dimensional physical set can be quantified by 
the overlap method [7,8] using a slight extension of the geometric overlap for possi- 
ble inhomogeneous distributions of physical properties. On the other hand, the 
Hausdorff distances approach is not readily applicable for chiral quantification of 
sub-dimensional discrete sets of physical nature such as the point-mass distribu- 
tion throughout a molecule. The quantification of physical chirality, being specific 
for each physical property, cannot, in principle, be generalized to a unified mode 
of physical chiral measure. 

No te  added  in proof 

The conjecture mentioned in the present article concerning the shape of U n U* 
for the maximal overlap has recently been proven to be achiral for convex sets U. 
This theorem will be presented in a forthcoming article by G. Gilat and Y. Gor- 
don. 
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